
LA-UR-
Approved for public release;
distribution is unlimited.

Title:

Author(s):

Submitted to:

Form 836 (8/00)

Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by the University of California for the U.S.
Department of Energy under contract W-7405-ENG-36. By acceptance of this article, the publisher recognizes that the U.S. Government
retains a nonexclusive, royalty-free license to publish or reproduce the published form of this contribution, or to allow others to do so, for U.S.
Government purposes. Los Alamos National Laboratory requests that the publisher identify this article as work performed under the
auspices of the U.S. Department of Energy. Los Alamos National Laboratory strongly supports academic freedom and a researcher’s right to
publish; as an institution, however, the Laboratory does not endorse the viewpoint of a publication or guarantee its technical correctness.



SEU Mitigation for Half-latches 
in Xilinx Virtex FPGAs

Paul Graham, 
Michael Caffrey,

Eric Johnson

Michael Wirthlin, 
Nathan Rollins



2

Abstract
In  this poster, we discuss in detail the consequences 
of radiation-induced single-event upsets (SEUs) in the 
state of half-latch structures found in Xilinx Virtex 
FPGAs and describe methods for mitigating the effects 
of half-latch SEUs.  One mitigation method's 
effectiveness is then illustrated through experimental 
data gathered through proton accelerator testing at 
Crocker Nuclear Laboratory at the University of 
California-Davis.  For the specific design and mitigation 
methodology tested, a factor of more than 100x was 
observed in reliability in regards to average proton
fluence until circuit failure over the unmitigated 
version of  the design.
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Outline
Why use SRAM FPGAs in space?
Half-Latches and SEUs
Mitigation Techniques
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Why Use SRAM FPGAs in 
Space?

Performance: 100x vs. radiation hardened µP (for fixed volume, 
power, weight), continuous processing at 100+ MS/s

On-orbit processing: can improve system sensitivity and reduce 
communication bandwidth 

On-orbit reprogrammability: counteract mission obsolescence 
and on-orbit faults

Cost: cheaper than low-volume ASICs

Lead time: no ASIC design, fab, and test

Challenge: SEU sensitivities
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Radiation-Tolerant Xilinx 
FPGAs: XQVR Family

Radiation tolerance through fabrication on an 
epitaxial silicon wafer with Virtex commercial masks
Radiation testing of the XQVR FPGAs (Xilinx/LANL)

Radiation tolerant (total dose, single-event latchup)
Sensitive to single event upsets (and possibly transients)

Development of SEU mitigation techniques important 
since SEUs affect:

User data memory
Logic resources and routing (through upsets in the 
programming data,  or configuration bitstream)
Internal FPGA circuits not visible and/or controllable by user
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SEU Detection and Mitigation 
for Configuration Bitstreams

SEU detection and mitigation techniques have 
been published before (see [1]-[8])
SEU detection for upsets in programming 
data

Example: Reading back the configuration memory 
and comparing it with a known good state

SEU mitigation
Example: Updating the configuration memory with 
a good known state through partial configuration



7

SEU Mitigation for User 
Data/Configuration Bitstream

Logic redundancy ([4]-[6],[8])
Commonly used technique
Can protect design from upsets in user 
data and upsets in configuration memory
Examples

Triple-modular redundancy (TMR)[6]
State machine recoding
Error correcting codes
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“Hidden” or Less Visible FPGA 
Device State

Beyond the management of SEUs in user data 
and configuration data, SEUs in the less 
visible or controllable portions of SRAM FPGAs 
must also be addressed.

Example: Upsets in the JTAG or configuration 
controllers
A common issue when using COTS
May require internal knowledge of the device to 
mitigate properly
Bitstream and data SEU mitigation techniques 
don’t help these issues
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Half-latches in Virtex FPGAs
Internal FPGA resources which efficiently 
provide constant logic values (1’s and 0’s) 
throughout the device
Found at the inputs of logic resources (IOBs, 
slices, clock resources, RAMs, etc.)
Are used heavily by the Xilinx implementation 
tools to provide constants in circuits (often 
100’s or 1000’s in a single Virtex 1000 design)
First mentioned in [6]
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Virtex Resources Sourced by 
Half-latches

TMUX, IMUXTBUF

GWEMUX, GTSMUX, GSRMUXSTARTUP

BYMUX, BXMUX, CEMUX, SRMUX, F1-F4*, G1-G4*SLICE

I1MUX, I2MUXPCILOGIC

SRMUX, TRIMUX, TCEMUX, OMUX, OCEMUX, ICEMUXIOB/PCIIOB

CEMUXGCLK

RSTMUXDLL

CAPMUXCAPTURE

TDO1MUX, TDO2MUXBSCAN

WEAMUX, ENAMUX, RSTAMUX, WEBMUX, ENBMUX, RSTBMUXBLOCKRAM

InputsResource

* non-critical
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Critical Half-Latches

Half-latches driving input muxes (see 
list on previous slide) are generally 
critical to design operation if used.
Half-latches driving LUT inputs are not 
as critical since LUTs are redundantly 
encoded so that if an unused input 
attached to a half-latch is inverted it will 
have no affect on the LUT output.
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Low-level Half-Latch 
Implementation

The half-latch is the PMOS 
transistor (T3) and inverter pair 
between input NMOS transisitors 
from the routing network and the 
resource input multiplexer (imux).
The half-latch is meant to hold a “1” 
value when T1 and T2 are off.  The 
circuit is initialized with device start-
up sequence.
T3 is a weak pull-up so that it can 
be out driven by signals from the 
routing network (when T1 or T2 are 
on).
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SEU Related Issues for Half-
Latches

The half-latch circuit can experience SEUs and will 
remain upset until:

A full reconfiguration with start-up sequence (reliable reset)
Another upset occurs (unreliable)
Recovery over time (unreliable)

During proton test, we observed recovery of half-
latch state

Possible mechanism for recovery: leakage through the T3
transistor. 

Partial configuration and bitstream SEU mitigation 
methods do not help fix.
Configuration bitstream readback will not detect.
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Half-latch Example
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Half-latch Example (2)
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Half-latch SEU Mitigation
As mentioned in [6], the best approach to mitigate 
the effects of half-latch SEUs is to remove a circuit’s 
reliance on the structures by using explicit logic 
constants implemented with other FPGA resources.
Explicit resources for generating logic constants are 
still susceptible to SEUs, but these SEUs can be 
detected and fixed with known configuration 
bitstream SEU mitigation techniques. 
Many approaches for mitigation exist, but the best 
will be those which are fully automated and affect 
the performance characteristics of designs the least.
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Examples of Constant Sources 
for Replacing Half-latches

o
1

0

s

CEMUX FDE

CE
D Q

Half Latch

1

Configuration Bit

OUTIN

CLK

generated
VCC

Externally

0
1

IBUF

1

1
o

1

0

s

CEMUX FDE

CE
D Q

Half Latch

1

Configuration Bit

OUTIN

CLK

FDP
D Q

PRE

Initialized
to 1 on

configuration

0
11

0

o
1

0

s

CEMUX FDE

CE
D Q

Half Latch

1

Configuration Bit

OUTIN

CLK

LUT
ROM

(all 1's) 0
1

1



18

Xilinx FPGA Design Flow

(minutes to hours)
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Half-Latch Replacement 
Approaches in Design Flow
Before placement and routing

Source-level
Ensure HDL source does not 
infer or use half-latch 
resources
Possible but difficult since 
synthesis and technology 
mapping may introduce half-
latches

Netlist-level
Library primitive 
replacement to remove 
primitives using half-latches
Possible but technology 
mapping may introduce half-
latches if not careful

After placement and routing
Physical Database-level

Modify NCD or XDL 
representations to eliminate 
half-latches
Will not accidentally 
introduce half-latches into 
the design
Requires additional 
information to integrate 
with logic redundancy 
techniques for SEU 
mitigation (performed after 
redundancy introduced)

Bitstream-level
Use Xilinx’s JBits tool
Conceptually possible, but 
JBits does support all FPGA 
resources
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RadDRC: A Half-latch 
Mitigation Tool

Created at Los Alamos National Laboratory
Detects half-latches by analyzing XDL representation
Mitigates by creating new XDL design having no 
critical half-latches
Constant source options

Externally generated “0” or “1”
Requires extra routing and (if necessary) an IOB

Multiple, distributed LUT generated constants
Allocates unused LUT resources and extra routing

Not currently redundancy aware (TMR, FSM recoding, 
etc.)
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Xilinx FPGA Design Flow with 
RadDRC

Requires XDL conversions 
and extra PAR (placement 
and routing) run

Uses original placed-and-
routed design as guide to 
ensure timing constraints 
and placement preserved 
as much as possible

VHDL EDIF NGD NCD(1)

NCD(2)

XDL(1)

NCD(3)

XDL(2)

BIT

Synthesis ngdbuild map

par

xdl

RadDRC

xdl

bitgen
NCD(4)

par

guide file
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Design Impacts of Half-latch 
Mitigation

Uses more routing and, if LUT sources are 
used, unused LUTs on the FPGA
Does not impact timing or power since the 
half-latch replacement nets do not toggle—
they are static nets
In practice, has not demonstrated any 
significant impacts on design performance for 
several large designs based on static timing 
analysis
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Half-latches and SEU 
Simulation

RadDRC was validated using the Virtex SEU Simulation system 
[9] developed by Brigham Young University and Los Alamos 
National Laboratory before performing a radiation experiment at 
an accelerator.
Though the SEU simulator only injects faults in the configuration 
bitstream, the changes in routing due to bitstream upsets can 
also upset half-latch states—an indirect effect.
Due to the indirect nature of the upset mechanism in the SEU 
simulator, the simulator is not an ideal solution for simulating
half-latch SEUs, but it still has been useful in our studies.

Half-latches in the CLB area of the chip appear to be easier to 
upset in the simulator than half-latches at the IOBs.
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Radiation Experiment
Performed to validate RadDRC 0.2.0 and the Virtex 
SEU simulator[10]
Used protons so that bitstream SEU rates could be 
controlled to about 1 upset/sec.

63.3 MeV protons
Beam fluxes: 1.0x107 and 3.5x107 protons/(cm2s)

Measured “fluence until failure” for half-latches in 
mitigated and unmitigated versions of a design

“Failure” was when the configuration bitstream was error-
free and the design had been reset but still exhibited 
persistent output errors
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SLAAC-1V Proton Radiation 
Test Fixture
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Proton Test Setup at Crocker 
Nuclear Laboratory UC-Davis

SLAAC1-V Proton
Source

Linux PC
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Design Tested
Utilization: 8308 slices, 
10872 LUTs, 15264 flip-
flops
Operated at 20 MHz for 
all but one trial (2 MHz 
for other trial)
Emulates feed-forward 
architecture typical of 
many signal processing 
designs
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Fluence until Failure Results
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Half-latch Recovery 
Observation

Plot of consecutive 
error count vs. time
Large number of 
consecutive errors 
due to half-latches, 
but occasionally 
they would recover
Possibly due to 
leaking in half-
latch’s PMOS 
transistor

Error Count: davis-lt2-200211221409.tst (w/ Half-Latches)
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Consecutive Error Plot for 
Mitigated Design

Plot of consecutive 
error count vs. time
Mitigated designs 
generally had no 
more than 3 
consecutive errors.
Mitigated designs are 
considerably better 
behaved than 
unmitigated designs.
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Half-latch Failures vs. 
Accumulated Dose

Three different 
series of tests were 
performed with the 
unmitigated 
designs, each at a 
different point in 
the irradiation of 
the FPGA
The plot shows that 
half-latches upset 
more easily as the 
cumulative ionizing 
dose increases.
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Discussion of Results and 
Conclusions

Half-latch mitigation clearly improves the reliability of a design.
For the samples provided by the `test, a 104x improvement in 
fluence until failure was observed.
The strings of consecutive errors are much smaller in the half-latch 
mitigated design.

Half-latches may recover over time but this feature is probably 
not useful for ensuring proper design operation.
The single error which occurred in the mitigated design was 
most likely due to a few critical half-latches at the IOBs that 
RadDRC 0.2.0 had missed (a problem fixed in RadDRC 0.3.0).
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Future Work

Creating a half-latch mitigation tool 
similar to RadDRC for Virtex-II/Virtex-II 
Pro FPGAs
Improving RadDRC so that is aware of 
logic redundancy so that it does not 
effectively introduce SEU sensitivities 
into these structures
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